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Dutcher films consist of a layer of liquid sandwiched between two solid capping layers and can spontane-
ously self-assemble to form corrugated surfaces. The interplay between the attractive van der Waals forces
across the film, and the elastic forces due to the deformation of the capping layers, produces well-defined
periodic undulations. We show how computer simulations can capture both the formation of undulations in
Dutcher films and the correct periodicity. Furthermore, we simulate Dutcher films which are either compressed
or stretched, resulting in the promotion or suppression of undulation growth. In this manner, applied deforma-
tions can be shown to guide the self-assembly process in Dutcher films and result in the formation of highly
oriented surface corrugations over large distances.
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Optical components �1�, scattering elements in light emit-
ting diodes �2�, and substrates for tissue growth �3� are just
some of the potential applications for corrugated thin films.
Here, we concentrate on the spontaneous formation of sur-
face undulations in Dutcher films �4–6�; thin trilayer systems
consisting of a liquid layer sandwiched in between two solid
capping layers. Surface undulations form in Dutcher films
with a characteristic wavelength depending on the interplay
between the attractive van der Waals forces across the film
and the elastic forces due to the deformation of the solid
capping layers. In order to tailor the surface of these films
towards specific applications it is necessary to control both
the anisotropy and the long-range order of the surface undu-
lations. We show how computer simulations can capture the
spontaneous formation of surface undulations in Dutcher
films and, furthermore, how the application of relatively
small strain fields can result in the formation of desirable
patterns with acceptable regularity.

Surface undulations can be created in a number of sys-
tems and in a variety of ways. For example, in bilayer sys-
tems large compressive stresses can arise upon cooling due
to a mismatch in thermal expansion coefficients between the
different layers �7�. These compressive stresses can then lead
to the buckling of the top layer and the formation of surface
undulations. Yoo et al. �8� has shown how placing an elasto-
meric mold on top of such a surface can result in a pattern
transfer from the mold to the buckling capping layer. An
alternative method for controlling the undulations in these
systems is to apply external compressive stresses. Ohzono
et al. �9� applied relatively large uniaxial compressive
strains �7%� in order to “orient” the buckling. However,
it should be noted that the application of compressive strains
of this magnitude can result in the formation of buckling
instabilities in their own right �10�. Recently, the thermal
expansion mismatch between the core and shell in
Ag core/SiOx shell microstructures was found to result in
complex patterns due to both the shell buckling and the
spherical geometry �11�.

Buckling instabilities can also arise due to the confine-
ment of osmotically swollen polymer films �12� or possibly
as a consequence of an acoustic Casimir effect �13�. How-
ever, buckling instabilities in “ultrathin” films are more com-

monly associated with van der Waals interactions across the
film �4–6,14�. In Dutcher films, and thin films in general,
attractive van der Waals, or dispersion, forces can amplify
interfacial thermal fluctuations �15�. That is, the van der
Waals forces across the film cause the spontaneous growth of
surface deformations. However, deforming the solid capped
surfaces is energetically unfavorable. It is this complex inter-
play between van der Waals interactions and elastic deforma-
tions which results in a phenomena known as “spinodal de-
formation” �14�. Thermal fluctuations on the surface of the
film can grow if the wavelength of the instability is large
enough. Furthermore, the exponential growth of these defor-
mations is fastest for a given wavelength �essentially select-
ing this periodicity in the system�. Typically, a lateral mor-
phology consisting of parallel domains of peaks and troughs
is observed locally, whilst globally the deformation pattern
remains isotropic �4–6,14�. The orientation of surface corru-
gations can be locally ordered at defects or cracks �6,14�,
however, it would be advantageous to impose long-range or-
der and uniformity on to these systems.

In order to capture the formation of surface undulations in
Dutcher films we augment a thin film equation �16,17�, de-
rived from the Navier-Stokes equations, with pressures from
the elastic deformation of the capping layers �18�. The thin
film equation has been successfully applied to capture the
dewetting phenomena in thin liquid films �16,19,20�. Besides
modeling dewetting behavior in quantitative agreement with
the experiments �21�, the thin film equation has been suc-
cessfully applied to dewetting on chemically heterogeneous
substrates �22�, dewetting with local density fluctuations
�23�, and the dewetting of phase separating blends �24�.

It is assumed that the film thickness is large enough that
continuum fluid and elasticity theories are applicable, yet
small enough that van der Waals forces play a part. We begin
with the Navier-Stokes equations under long-wave approxi-
mations. That is, we assume the film thickness is much
smaller than the characteristic wavelength of undulations in
the lateral plane. Under this condition the Navier-Stokes
equations can lead to the following boundary layer equations
�17,25�:
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where v is the fluid velocity, P is the pressure acting on the
film surface, and � is the fluid viscosity. The mass-
conserving kinematic equation is of the form �17�
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which, assuming symmetry about the midplane of the film,
results in the following thin film equation:
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where h is half the fluid film thickness �see Fig. 1� and no-
slip boundaries are considered at z=h and −h. The pressure
consists of three parts, the first of which is due to the van der
Waals interactions �15�
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where Aijk is the nonretarded Hamaker constant for media i
and k interacting across media j, and d is the thickness of
both the upper and lower solid capping layers. The pressure
on the fluid due to the bending of the solid layers is of the
form �26�
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where E is the Young’s modulus, and � the Poisson’s ratio,
of the solid layers. The third, and final, pressure term ac-
counts for the in-plane deformation of the film. The stretch-
ing free energy is given by �26�
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is the strain tensor, including cross terms in h, � is the area
of the film, and ui is the displacement in the ith direction.
The functional derivative of this free energy results in the
following local pressure term:
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Terms involving uy, and second derivatives of u, are ignored
in the above equation as in the systems considered here we
limit the deformations to uniform, uniaxial strain fields in the
x direction. Therefore, terms in the above equation contain-

FIG. 1. �Color online� Schematic of a thin polymer trilayer film.
The thickness of the fluid layer is 2h�x ,y , t� and the thickness of
both the upper and lower solid capping layers is d.

FIG. 2. �Color online� �a� A contour plot of �h ranging from
−1 nm �black� to 1 nm �white�. The system size, laterally, is
256 �m�256 �m, the Youngs modulus is 1 GPa and the snapshot
is taken at time t=585 s. �b� Wavelength of surface undulations as a
function of the Youngs modulus of the solid capping layers.
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ing
�ux

�x couple the application of a uniform and uniaxial strain
field to forces acting perpendicular to the film. That is, we
assume that the applied deformation is entirely confined to
the x direction, and in this manner isolate the effects of a
simple imposed deformation. The remaining terms are neg-
ligible until the deformation of the solid layers becomes
comparable to their thickness. Therefore, not only can we
simulate the evolution of the Dutcher film and include the
van der Waals and elastic bending forces, we can also take
into consideration an externally imposed deformation.

In the current study we take the Hamaker constants be-
tween the polymer solid and polymer fluid to be zero �A232

=A123=0� and consider only van der Waals forces from the
capping layer-air interface �A121=7.38�10−20J�. The initial
half thickness of the fluid layer is h�t=0�=h0+�, where � is
a small random contribution and h0 is 25 nm. The thickness
of the solid capping layers is d=25 nm and the Poissons ratio
of the solid layer is 0.3. The viscosity of the fluid influences
the time scale of the problem and is taken to be �
=104 Pa s.

We solve the above set of equations using finite difference
approximations. We use standard central difference approxi-
mations to capture the first and second order derivatives �for-
ward and backward approximations are not necessary in the
current model as we impose periodic boundary conditions in
the x and y directions�. The fourth order derivatives in Eq.
�5� are approximated by the following map
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where, hi,j is the height at the lattice coordinates i , j, and �x
is the lattice spacing, which is taken to be 1 �m. In this
manner, we can solve the evolution equation, subject to the
various pressures acting on the fluid layer.

In the absence of an applied strain field the undulations
appear on the surface of the film as shown in Fig. 2�a�, which
depicts a contour plot of �h. The system size, in lattice sites,
is taken to be L2=2562 which corresponds to a system size of
256�10−12 m2. Initially, the van der Waals forces destabilize
small fluctuations on the surface of the film. The amplitude
of these fluctuations grows exponentially with time through-
out the simulation, whilst the domain size of the fluctuations
grows to a characteristic value before plateauing. When the
height variations are comparable to the thickness of the solid
capping layers stretching contributions to the elastic energy
become important. Localized compression and stretching in
the lateral directions will then feed back into the evolution of
the height variations and the combined stretching and bend-
ing elastic stresses will eventually be expected to balance the
van der Waals pressures. However, for computational rea-
sons we only simulate the initial growth of the undulations
when height variations can be considered small compared to
the film thickness and stretching contributions can be ne-
glected �26�. That is, the displacement field in the x and y
directions is not considered to be appreciably influenced by
the local height variations and, in the absence of stretching
and compression, we assume �ux /�x to be zero in Eq. �7�.
Figure 2�a� shows the height fluctuations at time t�10 min,
when the amplitude of the fluctuations is an order of magni-
tude smaller than the thickness of the solid capping layer.
The undulations clearly self-assemble into domains of a
characteristic wavelength, however, the orientation of the un-
dulations would appear to be random.

The wavelength of the undulations is plotted in Fig. 2�b�,
as a function of the Young’s modulus of the capping layers
�27�. Increasing the Young’s modulus results in solid capping
layers which are less deformable and, therefore, the wave-

FIG. 3. �Color online� Contour
plots of �h, ranging from −1 nm
�black� to 1 nm �white�, for
systems subject to externally ap-
plied strain fields of �a� 1�10−6,
�b� 1�10−5, �c� 1�10−4, �d�
−1�10−6, �e� −1�10−5, and �f�
−1�10−4. The system size, later-
ally, is 256 �m�256 �m, the
Youngs modulus is 1 GPa and
the snapshots are taken at times
�a� t=600 s, �b� t=750 s, and
�c� t=2550 s, �d� t=570 s, �e�
t=360 s, and �f� t=10.5 s.
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length of the undulations increases �undulations of larger
wavelength involve less bending�. Dutcher et al. �4�
predicted that the fastest growing wavelength is given by
	=4���E /4A121�1−�2��1/4d3/4�h+d�. In Fig. 2�b� we plot
this theoretical prediction alongside our simulation results.
Given that the theory considers one-dimensional corruga-
tions, while clearly our systems exhibit isotropic two-
dimensional undulations, it is promising that the comparison
between our simulation results and theory is favorable. How-
ever, the theoretical analysis is based on the same continuum
theories incorporated into our model and, therefore, such
agreement is not surprising.

It would be highly desirable to exhibit some control over
the direction of these undulations in order to tailor the sur-
face topography towards specific applications. Figure 3
shows contour plots of various systems subject to uniaxial
strain fields during the entire simulation. While we still as-
sume height variations have a negligible effect on the lateral
deformations, we now use Eq. �7� to incorporate the effects
of the imposed deformations �either stretching or compres-
sion� which is shown to have an appreciable influence on the
evolution of the height variations. In Figs. 3�a�–3�c� the
systems are stretched in the x direction with uniaxial strain
fields of the magnitude 1�10−6, 1�10−5, and 1�10−4, re-
spectively. At the lowest strain field considered the morphol-
ogy appears to be largely unaffected by the applied strain.
However, as the strain field is increased the wrinkled mor-
phology begins to orient in the tensile direction. Further-
more, the periodicity of the undulations appears to increase
with increased stretching. The applied strain appears to be
suppressing the growth of fluctuations in the tensile direction
resulting in a topography consisting solely of corrugations
perpendicular to the tensile direction. Figures 3�d�–3�f� show
the height variations in systems which are compressed with
uniaxial strain fields of the magnitude 1�10−6, 1�10−5,
and 1�10−4, respectively. Rather than suppressing the
growth of undulations, as in the stretched systems, compres-
sion encourages the growth of fluctuations �28�. This results
in corrugated morphologies running perpendicular to the
compression direction. Similar to the effects of stretching,
compressing the systems also influences the periodicity of
the corrugations. Systems under compression, however, ex-
hibit corrugations of smaller wavelengths than that of
equivalent undeformed systems.

It is interesting that the wavelengths depend not only on
the initial thicknesses of the layers, the elastic properties of
the solid capping layers, and the strength of the van der
Waals forces, but also on the nature of the applied deforma-
tions. In order to quantify these effects we plot the relative
wavelength of the corrugations against the magnitude of the
strain field �see Fig. 4�. The relative wavelength of the cor-
rugation is defined as �	−	0� /	0, where 	0 is the wavelength
of undulations in the undeformed systems. Stretching the
films can result in an increase in the periodicity of up to

80%, while compressing the films can results in a decrease of
up to 60%, for the systems considered here. Therefore, not
only does deforming the films result in highly anisotropic
corrugations extending over the entire system, but the wave-
length of these corrugations can also be finely tuned.

To summarize, we have augmented a thin film equation of
fluid flow with pressure terms from elasticity theory in order
to describe the spontaneous formation of undulations in
Dutcher films. These simulations capture the dynamics of
undulation growth in these systems and the selection of a
characteristic wavelength. Furthermore, we find the wave-
length of these undulations to be in quantitative agreement
with theoretical predictions. We subject the films to uniaxial
deformations and observe that the direction and periodicity
of the undulations can be manipulated to create highly aniso-
tropic corrugated morphologies.

It is worth noting that local anisotropy is often observed
in experimental systems �4,6�, whilst in the undeformed sys-
tems considered here the undulated morphologies are isotro-
pic. This suggests that residual strains are present in the ex-
perimental films, as a consequence for example of thermal
mismatch between the sample and holder. Manipulation of
these strains could result in the formation of corrugations in
a given direction over large areas.

The results presented here are for when the height varia-
tions are of small amplitude and have a negligible effect on
the lateral deformations. Future studies will attempt to in-
clude these contributions and simulate larger deformations. It
is anticipated that the stretching term could have an effect on
the wavelength of the correlations at later times, just prior to
the two layers meeting. Once the two solid layers meet, how-
ever, the system will seek to maximize the contact between
the two layers �and decrease the overall van der Waals en-
ergy of the system�. This could potentially result in the for-
mation of isolated circular pockets of fluid.

FIG. 4. Relative wavelength of surface corrugations as a func-
tion of the magnitude of the applied strain field.
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